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ABSTRACT

A short proof of the following theorem is given: Let P be a finite partially
ordered set. If the maximal number of elements in an independent subset of
P is k, then P is the union of k chains.

Let P be a partially ordered set. Two elements a and b of P are comparable
ifa<borb<a. Asubset C of Pisa chain if every two distinct elements of C
are comparable. A subset S of P is independent if no two elements of S are
comparable.

The following theorem is due to Dilworth [3, Theorem 1.1]:

THEOREM. If the maximal number of elements in an independent subset of P
is k, then P is the union of k chains.

This note contains a short proof of Dilworth’s theorem for finite sets P.

Proof. Denote by IPI the cardinal of P. The proof proceeds by induction on
IPI, for all k simultaneously. If ]P[ =1, there is nothing to prove. Assume,
therefore, that the theorem holds for |P| < n, and let | P| = n. Denote by P__
and P, the sets of all maximal, resp. minimal elements of P.

Case 1. P contains an independent subset P, of k elements, different from
both P__ and P, Let P, = {yy,..,y,} be such a set. Define

Pt {xIxeP,(Ey)[yePo&yéx]},
{xlx eP,(Ey)[ye Po&x = y]}.

It is easily verified that P*NP =P,y P'"AP =P, P*#P and P~ # P
(the first relation follows from the independence of P,, the second from the
maximality of Py, the third ftom Py # P,;, and the fourth from Py # P,,.).

Now, [P*|<|P|, |P™|<|P|. By induction hypothesis, P* and P~ de-
compose into k chains:

p-

k k
p*=u, p= UL.
i=1 i=1

The elements of P,, being the minimal elements of P* and the maximal elements
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of P, are the minimal elements of the chains U, and the maximal elements of the
chains L;. Assume, without loss of generality, that y, is the minimal element of
U, and the maximal element of L; (1 £ i £ k). Define C; = L, U U,. C, is a chain,
and we have

k
P=P yuP*=|JcC.
i=1

Case 2. Every independent subset of P containing k elements coincides with
P or with Py, Take some a€ P, and choose a be P__, such that b= a
(b may equal a). Define C, = {a,b},and P’ = P — {a,b}. C;isa chain, | P'| <|P |,
and P’ contains k — 1, but no k mutually incomparable elements. Therefore we

have, by induction hypothesis, o’ = Uf‘; 1C,, where the C; are chains, and

k
P=P'U{ab}=JC. QED.
i=1

REMARK. 1. Other proofs of Dilworth’s theorem for finite sets may be found
in[2], [31,[4] and [5]. The original proof in [3] is direct, but somewhat compli-
cated. The proof in [2] uses the duality theorem of linear programming. In [4],
Dilworth’s theorem is shown to be equivalent to a theorem of Kdnig concerning
bi-chromatic graphs ([8, p. 232]). In [5], it is obtained as a consequence of a
theorem on the covering of a directed graph by a system of disjoint paths.

ReMARK 2. Dilworth’s theorem for general sets P can be easily deduced from
the finite case, applying the following result, which is a special case of a theorem

of Rado ([9], [6], [1D)-

THEOREM. Let P be a set, K a finite set, and let F be the class of all finite
subsets of P. For each F € Z, let ¢ be a mapping of F into K. Then there exists
a mapping ¢ of P into K, having the following property. For every F € F there
exists a Ge F, such that G 2 F and ¢(x) = ¢g(x) for all xe F.

A very short proof of Rado’s theorem, using Tychonoff’s theorem, may be
found in [9]. In [3], the infinite case of Dilworth’s theorem is deduced from the
finite case by another transfinite argument, using induction on k and Zorn’slemma.
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